(中京大学附属中京)**高等学校** H(27)数学

(100点満点 (40)分)

- 1. 次の問いに答えなさい。
 - (1) $(-2)^3 \div (-6)^2 \times (-3^4) = \boxed{1}$ 2 $\sigma \delta \delta$.

(2) $(\sqrt{6}-\sqrt{3})^2+(2\sqrt{2}+3)(4\sqrt{2}-6)$ を展開すると<u>3</u> - <u>4</u> $\sqrt{5}$ である。

(3) $a^2-4ab-2a+4b^2+4b+1$ を因数分解すると(<u>6</u> a- <u>7</u> b- <u>8</u>)² である。

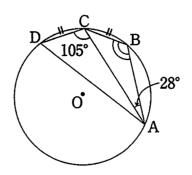
(4) 2つのサイコロを同時に投げるとき、目の差が3になる確率は 9 である。

(5) 2つの直線 $y = \frac{1}{3}x - \frac{11}{3}$, y = -2x + 1 の交点を通り、切片が -7 である直線の式は $y = \boxed{11}x - \boxed{12}$ である。

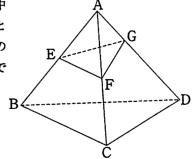
(6) 連立方程式
$$\begin{cases} (x+1): (3-2y) = 1:2 \\ \frac{2x-y}{3} - \frac{3(x-2y)}{4} = -\frac{2}{3} \end{cases}$$
 を解くと、 $(x, y) = \left(\boxed{13}, -\boxed{14} \right)$ である。

(7)
$$x^2 - (2+\sqrt{3})x + 1 + \sqrt{3} = 0$$
 の 2 つの解を a , b とするとき, $a^2 + 3ab + b^2$ の値は 16 + 17 $\sqrt{18}$ である。

(9) 右の図のように円 O の円周上に 4 点 A, B, C, D がある。
 BC=CD, ∠ACD=105°, ∠BAC=28°のとき、
 ∠ABC=22 23 24 °である。



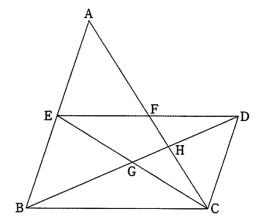
(10) 右の図のように四面体 ABCD がある。辺 AB, AC の中点をそれぞれ E, Fとし、辺 AD 上に AG: GD = 1:2となる点 Gをとる。四面体 ABCD と四面体 AEFG の体積の比を最も簡単な整数の比で表すと 25 26: 27 である。



右の図のように、△ABC の辺 AB 上に点 E をとり、平行四辺形 BCDE をつくる。平行四辺形 BCDE の対角線の交点を G、辺 AC と辺 ED の交点を F、辺 AC と対角線 BD の交点を H とする。

GH: HD=2:3のとき, 次の問いに答えよ。

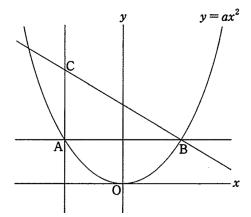
- (1) AF: FH を最も簡単な整数の比で表せ。 A
- (2) △AEF と△EBG の面積の比を最も簡単な整数 の比で表せ。 B



右の図のように放物線 $y=ax^2(a>0)$ 上に点 A (-6,4)をとり、点 A を通り x 軸に平行な直線をひき、放物線 $y=ax^2$ との交点を B とする。点 A を通り y 軸に平行な直線と点 B を通る直線との交点を C とし、点 C の y 座標が 9 であるとき、次の問いに答えよ。

- (1) 直線 BC の式を求めよ。 **C**
- (2) 点 C を通り、∠ ACB を 2 等分する直線の式を 求めよ。
- (3) 放物線 y=ax² および線分 CA, CB で囲まれた
 図形の面積を2等分する直線が原点 O を通ると
 き、この直線の式を求めよ。

(解答欄に途中計算や考え方を沓き、答えを求めよ。)



(中京学附属中京)高等学校 H(27)数学

(100点満点 (40)分)

1. 次の問いに答えなさい。

(1)
$$(-2)^3 \div (-6)^2 \times (-3^4) = 1$$
 2 である。

$$= -8 \div 36 \times (-81)$$

$$= \frac{-8x^2(-84)^2}{36x_1} = 18$$

$$(-2)^3 = (-2) \times (-2) \times (-2)$$

$$= -8$$

•
$$(-6)^2 = 36$$

•
$$(-3^4) = -3 \times 3 \times 3 \times 3$$

= -8

(2)
$$(\sqrt{6}-\sqrt{3})^2+(2\sqrt{2}+3)(4\sqrt{2}-6)$$
を展開すると3-4 $\sqrt{5}$ である。

$$= 9 - 6\sqrt{2} - 2$$

$$= 7 - 6\sqrt{2}$$

•
$$(\sqrt{6} - \sqrt{3})^2 = (\sqrt{6})^2 - 2x \sqrt{6} \times \sqrt{3}$$

+ $(\sqrt{3})^2$
= $6 - 6\sqrt{2} + 3$

 $= 9 - 6\sqrt{2}$

•
$$(2\sqrt{2}+3)(4\sqrt{2}-6)$$

= $16-12\sqrt{2}+12\sqrt{2}-18$
= -2

(3)
$$a^2-4ab-2a+4b^2+4b+1$$
 を因数分解すると (6 $a-$ 7 $b-$ 8) 2 である。

$$= a^2 + 4ab + 4b^2 - 2a + 4b + 1$$

$$=(a-2b)^2-2(a-2b)+1$$

$$M^2 - 2M + 1 = (M - 1)$$

$$= (a-2b-1)^2$$

(4) 2つのサイコロを同時に投げるとき、目の差が3になる確率は 10 である。

2つのサイロロをの, bとすると目の差かる

$$(a,b) = (1,4)(2,5)(3,6)$$
 $\frac{1}{2}$ $\frac{2}{3}$ $\frac{6}{36} = \frac{1}{6}$

(5) 2つの直線
$$y = \frac{1}{3}x - \frac{11}{3}$$
, $y = -2x + 1$ の交点を通り、 切片が -7 である直線の式は $y = \boxed{11}x - \boxed{12}$ である。

①より 連立方程式 を解く。

$$\begin{cases} y = \frac{1}{3}x - \frac{11}{3} \\ y = -2x + 1 \end{cases}$$

$$\frac{1}{3}x - \frac{11}{3} = -2x + 1$$

$$2x - 11 = -6x + 3$$

$$2x - 14$$

$$2x - 14$$

$$3x - 14$$

(2)
$$\pm \frac{1}{2}$$
 × 12
 $4(2x-4)-3\times 3(x-24)=-8$
 $8x-4y-9x+18y=-8$
 $x-14y=8$

(7) $x^2 - (2+\sqrt{3})x + 1 + \sqrt{3} = 0$ の 2 つの解を a, b とするとき, $a^2 + 3ab + b^2$ の値は

$$(x-a)(x-b)=0$$
 とける。 $A^2+3ab+b^2$ $\chi^2-(a+b)x+ab=0$ $= A^2+2ab+b^2+ab$ $\chi^2-(2+\sqrt{3})x+(+\sqrt{3}=0)$ $= (a+b)^2+ab$ $= (2+\sqrt{3})^2+(1+\sqrt{3})^2$

$$a+b = 2+\sqrt{3}$$

$$ab = 1+\sqrt{3}$$

$$A^{2} + 3ab + b^{2}$$

$$= A^{2} + 2ab + b^{2} + ab$$

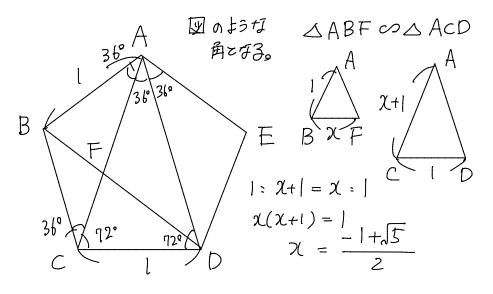
$$= (a + b)^{2} + ab$$

$$= (2 + \sqrt{3})^{2} + (1 + \sqrt{3})^{2}$$

$$= 4 + 4\sqrt{3} + 3 + 1 + \sqrt{3}$$

$$= 8 + 5\sqrt{3}$$

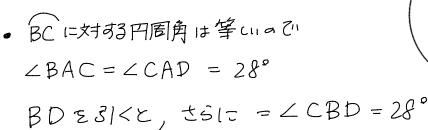
(8) 1 辺の長さが1 の正五角形の対角線の長さは19 + $\sqrt{20}$ である。

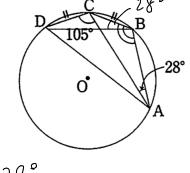


以上より
対解の表と
=
$$X+1$$

= $\frac{-1+\sqrt{5}}{2}+1$
= $\frac{1+\sqrt{5}}{2}$ cm

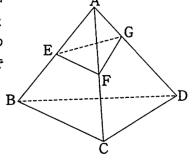
(9) 右の図のように円 O の円周上に 4 点 A、B、C、D がある。
 BC=CD、∠ACD=105°、∠BAC=28°のとき、
 ∠ABC=22 23 24 である。





• AD に対する円周角は等いので ∠DCA = ∠DBA = 105°

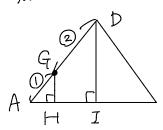
(10) 右の図のように四面体 ABCD がある。辺 AB、AC の中点をそれぞれ E、Fとし、辺 AD 上に AG:GD = 1:2となる点 Gをとる。四面体 ABCD と四面体 AEFG の体積の比を最も簡単な整数の比で表すと 25 26 : 27 である。



• 面積比 $\triangle ABC : \triangle AEF = 2^2 = |^2 = 4 = 1$

◆ △ABC ○ △AEFで 相似比は2=1

・高さの比



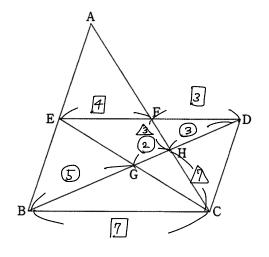
AD:AG = DI:GI = 3:1 四面体 ABCDは

C AFFの任で高さか3倍なるで

右の図のように、△ABCの辺 AB上に点Eをと り、平行四辺形 BCDE をつくる。平行四辺形 BCDE の対角線の交点を G, 辺 AC と辺 ED の交点を F, 辺 AC と対角線 BD の交点を H とする。

GH: HD=2:3のとき、次の問いに答えよ。

- (1) AF: FH を最も簡単な整数の比で表せ。 A
- (2) △AEFと△EBGの面積の比を最も簡単な整数 の比で表せ。B



(1)

AFHD ∞ △ CHB は

相似比 ③: ⑦ 🗸

相似此 [4]:[3]

AF = X Y d3Z

DH: HG = 3:2

$$\triangle AFF \cap \triangle CDF \downarrow \qquad BG:GD = 1:1 \forall 0 \forall 0 \\ BG:GH:HD = 5:2:3 \ \text{fy}$$

$$BH:HD=BC:FD$$

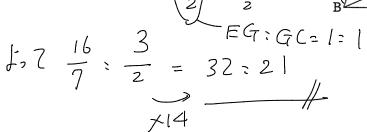
$$3\chi = 40$$
 AF: FH = $\frac{40}{3}$: 3
 $\chi = \frac{40}{3}$ = $40:9$

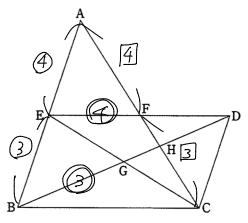
(2) AE:EB = 4:3 + 9

AAEC: DEBC = 4:3

$$\triangle AEF = 4 \times \frac{4}{7} = \frac{16}{7}$$

$$\triangle EBG = 3 \times \left(\frac{1}{2}\right) = \frac{3}{2}$$

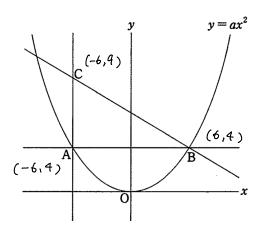




右の図のように放物線 $y=ax^2(a>0)$ 上に点 A (-6,4)をとり, 点 A を通り x 軸に平行な直線をひき, 放物線 $y=ax^2$ との交点を B とする。点 A を通り y軸に平行な直線と点 B を通る直線との交点を C とし、 点Cのy座標が9であるとき、次の問いに答えよ。

- 直線 BC の式を求めよ。
- (2) 点 C を通り、 ∠ ACB を 2 等分する直線の式を 求めよ。 D
- (3) 放物線 $y=ax^2$ および線分 CA, CB で囲まれた 図形の面積を2等分する直線が原点0を通ると き, この直線の式を求めよ。 E

(解答欄に途中計算や考え方を書き、答えを求めよ。)



ACは 4車由に平行なるご 2座標は第1 C(-6,9) (1)

BはAの 4軸対称の点なので B(6,4) U代入

傾き=
$$\frac{4-9}{6-(-6)} = -\frac{5}{12}$$

傾き =
$$\frac{4-9}{6-(-6)} = -\frac{5}{12}$$
 $y = -\frac{5}{12}x+b$ $4 = -\frac{5}{2}+b$, $y = -\frac{5}{12}x+\frac{13}{2}$

(2)D(-6,-4) (0,0)

C (-6,9) CのAB対称の点をD2し、 A B DBの中点をM2しCM E引くと ACDMEACBM 7"ZDCM=ZBCM

 $M\left(\frac{6+(-6)}{2}, \frac{4+(-4)}{2}\right) = M(0,0)$ $CM: f = -\frac{3}{2}x$

$$\frac{13}{2} \times \chi \times \frac{1}{z} = \frac{15}{2}, \quad \chi = \frac{30}{13} \quad y = -\frac{5}{12} \times \frac{30}{13} + \frac{13}{2} = \frac{97}{13}$$

$$\frac{13}{13} \times \chi \times \frac{1}{z} = \frac{15}{2}, \quad \chi = \frac{30}{13} \quad y = -\frac{5}{12} \times \frac{30}{13} + \frac{13}{2} = \frac{97}{13}$$

$$\frac{13}{13} \times \chi \times \frac{1}{z} = \frac{15}{2}, \quad \chi = \frac{30}{13} \times \frac{13}{2} = \frac{97}{13}$$

$$\frac{13}{13} \times \chi \times \frac{1}{z} = \frac{15}{2}, \quad \chi = \frac{30}{13} \times \frac{13}{2} = \frac{97}{13}$$

$$\frac{13}{13} \times \chi \times \frac{1}{z} = \frac{15}{2}, \quad \chi = \frac{30}{13} \times \frac{13}{2} = \frac{97}{13}$$

$$\frac{13}{13} \times \chi \times \frac{1}{z} = \frac{15}{2}, \quad \chi = \frac{15}{13} \times \frac{30}{13} \times \frac{13}{2} = \frac{97}{13}$$